在 java 应用程序中整合 ai 的最佳实践涉及使用 java 框架,如 tensorflow 和 spring boot。以下步骤可用于实现图像分类用例:1. 导入 tensorflow 和 spring boot 依赖项;2. 加载预训练的 tensorflow 模型;3. 预处理图像输入;4. 使用加载的模型进行预测;5. 提供一个 rest api 端点以接收图像并返回分类结果。
Java 框架与人工智能的最佳实践
随着人工智能 (AI) 在各种行业的广泛应用,将 AI 技术整合到 Java 应用程序中变得至关重要。本文将探讨使用 Java 框架实现 AI 最佳实践,并通过实战案例进行演示。
实战案例:图像分类
我们将构建一个使用 TensorFlow 和 Spring Boot 的 Java 应用程序,用于对图像进行分类。
- 导入依赖项
立即学习“Java免费学习笔记(深入)”;
在 Maven 项目中添加以下依赖项:org.tensorflow tensorflow 2.8.1 登录后复制2. 加载模型在 Java 代码中,加载预训练的 TensorFlow 模型:private static final String MODEL_PATH = "path/to/model.pb";org.springframework.boot spring-boot-starter-web
private TensorFlowModel model;
public void init() {
try (Graph graph = new Graph()) {
graph.importGraphDef(FileUtil.fileToBytes(MODEL_PATH));
model = new TensorFlowModel(graph);
} catch (IOException e) {
throw new RuntimeException("Failed to load model: " + e.getMessage());
}
}登录后复制3. 图像预处理对图像进行预处理以符合模型的输入要求:private Tensor preprocessImage(BufferedImage image) {
Tensor.Builder builder = Tensor.create(new long[] {1, image.getHeight(), image.getWidth(), 3});
FloatBuffer buffer = builder.floatValue();
for (int i = 0; i < image.getHeight(); i++) {
for (int j = 0; j < image.getWidth(); j++) {
int color = image.getRGB(j, i);
buffer.put((color >> 16) & 0xFF / 255.0f);
buffer.put((color >> 8) & 0xFF / 255.0f);
buffer.put(color & 0xFF / 255.0f);
}
}
return builder.build().expandDims(0);
}登录后复制4. 预测使用加载的模型进行预测:public List
Tensor input = preprocessImage(image);
Tensor output = model.execute(input, "Softmax");
float[][] scores = output.copyTo(new float[1][1000]);
output.close();
return getTopPredictions(scores[0]);
}
private List
return IntStream.range(0, scores.length)
.mapToObj(i -> new Prediction(i, scores[i]))
.sorted(Comparator.comparing(Prediction::getScore).reversed())
.limit(10)
.collect(Collectors.toList());
}登录后复制5. 控制器提供 REST 端点接受图像并返回分类结果:@RestController
@RequestMapping("/api/predictions")
public class PredictionsController {
@PostMapping
public List
// base64解码图像
BufferedImage decodedImage = ImageIO.read(image.getInputStream());
return predictionService.predict(decodedImage);
}
}登录后复制以上就是java框架与人工智能有哪些最佳实践?的详细内容,更多请关注php中文网其它相关文章!


BrianSab10 天前
发表在:南通速强批量添加水印专家 v1.83Эта статья для ознак...
Ronaldgag12 天前
发表在:11日17日,星期一,在这里每天60秒读懂世界!Free PHP Blockchain ...
NelsonBOT12 天前
发表在:11日16日,星期日,在这里每天60秒读懂世界!Free non-criminal in...
Darrenjhjhjhcunny14 天前
发表在:11日14日,星期五,在这里每天60秒读懂世界!Атака черной материи...
parifoot-rdc-7926 天前
发表在:laravel 找不到页面Votre guide <a href=...
Anya142Sa1 个月前
发表在:ASUS华硕A8N-SLI Deluxe主板BIOS 10110Hello friends! I c...
91资源网站长-冰晨1 个月前
发表在:广告合作123
FrankFAT1 个月前
发表在:10日14日,星期二,在这里每天60秒读懂世界!Big cocks of blacks ...
RichardGlymn1 个月前
发表在:Java webservice多个参数怎么调用https://t.me/win_1_c...
Thomasstolo1 个月前
发表在:Java webservice多个参数怎么调用https://t.me/s/Casin...